Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide.
نویسندگان
چکیده
High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10(-2) S cm(-1)) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 μM was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.
منابع مشابه
Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis
Many materials have been explored as potential hydrogen evolution reaction (HER) electrocatalysts to generate clean hydrogen fuel via water electrolysis, but none so far compete with the highly efficient and stable (but cost prohibitive) noble metals. Similarly, noble metals often excel as electrocatalytic counter electrode materials in regenerative liquid-junction photoelectrochemical solar ce...
متن کاملHighly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis
CoP nanostructures that exposed predominantly (111) crystal facets were synthesized and evaluated for performance as electrocatalysts for the hydrogen-evolution reaction (HER). The branched CoP nanostructures were synthesized by reacting cobalt(II) acetylacetonate with trioctylphosphine in the presence of trioctylphosphine oxide. Electrodes comprised of the branched CoP nanostructures deposited...
متن کاملCarbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.
The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient ...
متن کاملA review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells
The incorporation of nanomaterials into electrochemical sensors is an attractive approach towards the improvement of the sensitivity of amperometry and also can provide improved sensor selectivity and stability. This review (with 137 references) details the current state of the art and new trends in nanomaterial-based electrochemical sensing of hydrogen peroxide (H2O2), hydrogen sulfide (H2S) a...
متن کاملAnomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage.
While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2014